Higgs Physics
with ATLAS

Markus Schumacher, Bonn University

MPI Kolloquium, Werner-Heisenberg-Institut, November 29th 2005
the Higgs Mechanism and SM Higgs phenomenology at LHC
- discovery potential for SM Higgs boson
- investigation of the Higgs boson profile
- phenomenology of SUSY Higgs bosons
- discovery potential for MSSM Higgs bosons
- discriminating the SM from extended Higgs sectors
- conclusion and outlook
The Higgs Mechanism in the Nut Shell

The problem:
- consistent description of nature seems to be based on gauge symmetry
- $SU(2)_L \times U(1)$ gauge symmetry \rightarrow no masses for W and Z and fermions
- "ad hoc" mass terms spoil
 - renormalisibility \rightarrow no precise calculation of observables
 - high energy behaviour \rightarrow $W_L W_L$ scattering violates unitarity at $E_{CM} \sim 1.2$ TeV

The "standard" solution:
- new doublet of complex scalar fields with appropriately chosen potential V
- \rightarrow vacuum spontaneously breaks gauge symmetry
- \rightarrow one new particle: the Higgs boson H
 $\Phi = v + H$
Mass generation and Higgs couplings: $\Phi = v + H$

Interaction of particles with $v = 247$ GeV

- **Effective mass** = friction of particles with omnipresent "Äther"
- $m_f \sim g_f v$ Yukawa coupling
- $M_V \sim g v$ gauge coupling

Interaction of particles with Higgs H

- Fermions $g_f \sim m_f / v$
- W/Z Bosons: $g_V \sim 2 M_V / v$

VVH coupling $\sim vev$

only present after EWSB breaking !!!

1 unknown parameter in SM: the mass of the Higgs boson
Higgs Boson Decays in SM

for $M < 135$ GeV: $H \to bb, \tau\tau$ dominant

for $M > 135$ GeV: $H \to WW, ZZ$ dominant

tiny: $H \to \gamma\gamma$ also important
Status of SM Higgs Searches I: LEP

Direct search:

- \(M_H < 114.4 \text{ GeV} \) excluded at 95% CL
- \(M_H < 114.4 \text{ GeV} \) at 95% CL, \(m_{\text{top}} = 172 \text{ GeV} \)

Electroweak fit:

- \(M_H < 186 \text{ GeV} \) at 95% CL, \(m_{\text{top}} = 172 \text{ GeV} \)

\((M_H < 216 \text{ GeV} \text{ for } m_{\text{top}} = 175 \text{ GeV})\)
Expected sensitivity:
95% CL exclusion up to 130 GeV with 4fb$^{-1}$ per experiment
3 sigma evidence up to 130 GeV with 8fb$^{-1}$ per experiment

Current sensitivity:
Cross section limits at level of
$\sim 10 \times$ SM cross section
Higgs Physics at LHC

- discovery of 1 neutral scalar Higgs boson
 (determination of mass, spin, CP)

- discrimination between SM and extended Higgs sectors

<table>
<thead>
<tr>
<th>direct observation of additional Higgs bosons</th>
<th>determination of Higgs profile: deviations from SM prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) > 1 neutral Higgs boson</td>
<td>1) mass</td>
</tr>
<tr>
<td>2) charged Higgs boson</td>
<td>2) quantum numbers:</td>
</tr>
<tr>
<td>3) exotic decay modes</td>
<td>spin and CP</td>
</tr>
<tr>
<td>e.g. H→ invisible</td>
<td>3) BRs, total width, couplings</td>
</tr>
<tr>
<td>4)</td>
<td>4) self coupling at SLHC</td>
</tr>
</tbody>
</table>
LHC and ATLAS

- **LHC:** proton proton collisions at $E_{CM} = 14$ TEV, start in 2007
 - low luminosity running: $1(2) \times 10^{33} / (\text{cm}^2 \text{s}) \rightarrow 10(20) \text{ fb}^{-1}/\text{year}$
 - high luminosity running: $10^{34} / (\text{cm}^2 \text{s}) \rightarrow 100 \text{ fb}^{-1}/\text{year}$

- **A Toroidal LHC Aparatus**
 - $H \rightarrow 2$ photons, $H \rightarrow ZZ \rightarrow 4$ leptons
 - anticipated $\sigma_M/M_H \sim 1\%$
 - \rightarrow em.-calorimetry, μ–spectrometer
 - ttH, $H \rightarrow bb$
 - $\varepsilon_b = 60(50)\%$ $R_c > 10$ $R_{udsg} > 100$
 - \rightarrow Si tracking detectors
 - $H \rightarrow \tau\tau$, $\rightarrow WW \rightarrow l\nu l\nu$, VBF prod.
 - missing E. resolution, hermiticity,
 - forward jets \rightarrow calorimetry to $\eta = 5$

- MC studies with fast simulation of ATLAS detector
- key performance numbers from full sim.: b/tau/jet/el./γ/μ identification, isolation criteria, jet veto, mass resolutions, trigger efficiencies, ...
Production of the SM Higgs Boson at LHC

\[\sigma(pp \rightarrow H + X) \]
\[\sqrt{s} = 14 \text{ TeV} \]
\[m_t = 175 \text{ GeV} \]
CTEQ4M

M. Spira et al.
NLO QCD

Markus Schumacher
Higgs Physics with ATLAS
Munich, November 29th 2005
QCD corrections and Knowledge of Cross Sections

e.g.: Gluon Gluon Fusion

- $K = \sigma_{\text{NNLO}}/\sigma_{\text{LO}} \sim 2$
- $\Delta\sigma = 15\%$ from scale variations
- Error from PDF uncertainty $\sim 10\%$

Caveat: scale variations may underestimate the uncertainties!

- ttH: $K \sim 1.2$, $\Delta\sigma \sim 15\%$
- WH/ZH: $K \sim 1.3$ to 1.4, $\Delta\sigma \sim 7\%$
- VBF: $K \sim 1.1$, $\Delta\sigma \sim 4\%$ + uncertainties from PDF (5 to 15%)

- but: rarely MC at NLO available (except gluon gluon fusion)
- background: NLO calculations often not available
 - need background estimate from data
 - ATLAS policy: use $K=1$ for signal
Cross sections for Background Processes

Background: mainly QCD driven

Signal: often electroweak interaction

→ photons, leptons, ...

overwhelming background

→ trigger: 10^{-7} reduction

on leptons, photons, missing E_T

Higgs 150 GeV: $S/B \leq 10^{-10}$
Discovery Potential for light SM Higgs boson

discovery channels

- **GGF:** $H \rightarrow \gamma\gamma$
- **GGF:** $H \rightarrow ZZ \rightarrow 4l^{\pm-}$
- **GGF:** $H \rightarrow WW \rightarrow 2l\nu\nu$
- **ttH:** $H \rightarrow bb$
- **VBF:** $H \rightarrow \tau\tau$
- **VBF:** $H \rightarrow WW$

For $M_H > 300$ GeV also:
- VBF: $H \rightarrow ZZ \rightarrow ll\nu\nu$
- VBF: $WW \rightarrow l\nuqq$

- no fully hadronic final states: eg. GGF, VBF: $H \rightarrow bb$
- Higgs Boson mass reconstruction possible?
- background controlable (S/B), estimate from data possible?
H → 2 Photons

- **signature:** two high $P_t\gamma$
- **background:** irreducible $pp\rightarrow \gamma\gamma + x$
 reducible $pp\rightarrow \gamma j, jj, \ldots$
- **exp issues (mainly for ECAL):**
 - γ, jet separation
 - energy scale, angular resolution
 - conversions/dead material

ATLAS 100fb$^{-1}$

- $S/BG \sim 1/20$
- mass resolution σ_M: $\sim 1\%$
- precise background estimate from sidebands (O(0.1%))

preliminary NLO study:
- increase of S/\sqrt{B} by 50%
Gluon Fusion: $H \rightarrow ZZ(\ast) \rightarrow 4\text{ Leptons}$

- **signature**: 4 high p_t isolated leptons
 1(2) dilepton mass $\sim M_Z$

- **irreducible BG**: ZZ
 \rightarrow mass reconstruction

- **reducible BG**: $tt, Zbb \rightarrow 4\text{ leptons}$
 \rightarrow rejection via
 lepton isolation and b-veto

- **good mass resolution σ_M: $\sim 1\%$**

- **small and flat background**
 \rightarrow easy estimate from data

- **preliminary NLO study indicates**
 significance increase by 25%
Gluon Fusion: $H \rightarrow WW \rightarrow l^+ l^-$

- **signature:**
 - 2 high p_t leptons + large missing E_T
 - lepton spin correlations

- no mass peak \rightarrow transverse mass

$$m_T = \sqrt{2 \, P_T^{\ell \ell} E_T \, (1 - \cos \Delta \phi)}$$

- **BG:** WW, WZ, tt
 - lepton iso., missing E resolution
 - jet (b-jet) veto against tt

- **BG estimate in data from** $\Delta \Phi_{ll}$
 - \rightarrow NLO effect on spin corr.
 - \rightarrow $gg \rightarrow WW$ contribution signal like

ATLAS

- $M=170\text{GeV}$
- $L=30\text{fb}^{-1}$

Dührssen, prel.

- $m_H=170\text{ GeV}/c^2$
ttH with $H \rightarrow bb$

- **signature**: 1 lepton, missing energy
- **6 jets of which 4 b-tagged**
- **reducible BG**: $tt+\text{jets}, W+\text{jets} \rightarrow \text{b-tagging}$
- **irreducible BG**: $ttbb \rightarrow \text{reconstruct mass peak}$

- **exp. issue**: full reconstruction of ttH final state \rightarrow combinatorics !!!
- **need good b-tagging + jet / missing energy performance**

- **mass resolution σ_M: ~ 15%**
- **50% correct bb pairings**

- **very difficult background estimate from data with exp. uncertainty $\sim O(10\%)$**
- \rightarrow normalisation from side band
- \rightarrow shape from „re-tagged“ ttjj sample

only channel to see $H \rightarrow bb$
Vector Boson Fusion: $pp \rightarrow qqH$

- **signature:**
 - 2 forward jets with large rapidity gap
 - only Higgs decay products in central part of detector
Vector Boson Fusion: $pp \rightarrow q\bar{q}H$

- 2 forward tagging jets with rapidity

- **theory questions:**
 - jet distributions at NLO?
 - esp. direction of 3rd jet?
 - efficiency of central jet veto?

- need NLO MC generator for signal and BG

- **experimental issues:**

 - forward jet reconstruction
 - jet-veto fake rate due to pile up

Experimental Issues:

Forward Jet Reconstruction

- Efficiency

- $p_T > 20$ GeV

- η vs. Efficiency (ATLAS)

- $\Delta\eta$ vs. Efficiency (ATLAS)

Jet-Veto Fake Rate Due to Pile Up

- p_T Veto Threshold vs. Fake Rate (%)

- High Lumi vs. Low Lumi (ATLAS)
Weak Boson Fusion: H→WW→llνν (lνqq)

- **signature:** tagging jets +
 - 2 high p_t leptons + large missing E_T
 - lepton spin correlations (spin1↔0)
 - no mass peak \rightarrow transverse mass

- **backgrounds:**
 - tt, Wt, WWjj, ...

- S/BG \sim 3.5/1
- BG uncertainty \sim 10 %

- shape from MC
- normalisation from side bands in M_T and $\Delta \phi_{ll}$

ATLAS

- **Higgs signal $m_H=160$ GeV/c²**
- **ATLAS**
- **10 fb$^{-1}$**

Central jet veto

b-veto

Transverse mass
Vector Boson Fusion: $H \to \tau \tau \to l \ell 4 \nu$ (I had 3 ν)

- signature: tagging jets +
 - 2 high p_t leptons + large missing E_T
 - mass reconstruction despite 4 ν
 in collinear approximation

- backgrounds: Zjj, tt

- mass resolution $\sim 10\%$
 determined by missing E_T resolution

- BG uncertainty ~ 5 to 10%
 for $M_H > 125$ GeV: flat sideband
 for $M_H < 125$ normalisation from Z peak

- $S/BG \sim 1$ to $2 / 1$

ATLAS
$H \to \tau \tau \to e\mu$
$M_H = 120$ GeV

central jet veto
reconstruction
of $m_{\tau\tau}$
Vector Boson Fusion, $H \rightarrow \tau\tau$: estimate of BG shape from data

- **Idea:** $jjZ \rightarrow \mu\mu$ and $jjZ \rightarrow \tau\tau \rightarrow \mu\mu$
 - look almost the same, esp. in calos
 - same missing energy
 - only μ momenta different
- **Method:** select $Z \rightarrow \mu\mu$ events
 - randomise μ momenta
 - apply "normal" mass reco.

Promising prel. results from ongoing diploma thesis in BN (M. Schmitz)
SM discovery potential depending on int. luminosity

- discovery from LEP exclusion until 1 TeV
 - from combination of search channels with 15 fb^{-1} of well understood data
 - with individual search channels with 30 fb^{-1} of well understood data
- for GGF: raise of significance by up to 50% at NLO
- results for cut based analysis → improvement by multivariate methods
Measurement of Higgs Boson Mass

- **Direct** from mass peak:
 \[H \rightarrow \gamma\gamma \] \[H \rightarrow bb \] \[H \rightarrow ZZ \rightarrow 4l \]

- **“Indirect”** from Likelihood fit to transverse mass spectrum:
 \[H \rightarrow WW \rightarrow l\nu l\nu \] \[WH \rightarrow WWW \rightarrow l\nu l\nu l\nu \]

- **Uncertainties considered:**
 i) statistical
 ii) absolute energy scale
 \[0.1 (0.02) \% \] for \(l, \gamma, 1\% \) for jets
 iii) \(5\% \) on BG + signal for \(H \rightarrow WW \)

VBF with \(H \rightarrow \tau\tau \) or WW not studied yet!

Delta M/M: 0.1% to 1%
Determination of Higgs boson couplings

Born level couplings:
- Fermions: \(g_f = \frac{m_f}{v} \)
- W/Z Bosons: \(g_V = 2 \frac{M_V^2}{v} \)

Loop induced effective couplings:
(sensitive to new physics)
- Photon: \(g_\gamma = g_W^+ + g_t^+ + \ldots \)
- Gluon: \(g_\gamma = g_t^+ + g_b^+ + \ldots \)

- couplings in production: \(\sigma_{Hx} = \text{const} \times \Gamma_{Hx} \) and decay \(\text{BR}(H\rightarrow yy) = \Gamma_H / \Gamma_{\text{tot}} \)
- experiment: \(\text{rate} = N_{\text{sig}} + N_{BG} \) \(N_{\text{sig}} = L \times \text{efficiency} \times \sigma_{Hx} \times \text{BR} \)
 \(\rightarrow \) need to know: luminosity, efficiency, background

\[\sigma_{Hx} \times \text{BR} \sim \frac{\Gamma_{Hx}^{\text{prod}}\Gamma_{Hx}^{\text{decay}}}{\Gamma_{\text{tot}}} \]

- tasks: - disentangle contribution from production and decay
 - determine \(\Gamma_{\text{tot}} \)

Partial width: \(\Gamma_{Hz} \sim g_{Hz}^2 \)
Ratio of Partial Widths

- ratios of BRs = ratios of $\Gamma = $ ratios of g, if only Born level couplings

\[
\frac{\sigma_{\text{VBF}}}{} \times \text{BR}(H \rightarrow WW) = \frac{\Gamma_W \Gamma_W \Gamma_{tot}}{\Gamma_W \Gamma_W \Gamma_{tot}} = \frac{\Gamma_W}{\Gamma_W}
\]

13 analysis used
9 fit parameters:

\[
\begin{align*}
\Gamma_Z/\Gamma_W & \quad \Gamma_\gamma/\Gamma_W & \quad \Gamma_\tau/\Gamma_W & \quad \Gamma_b/\Gamma_W \\
\Gamma_W & \quad \Gamma_W & \quad \Gamma_W & \quad \Gamma_W
\end{align*}
\]

including various exp. and theo. errors

\[
(\sigma \cdot \text{BR})_{GF,H \rightarrow WW} \\
(\sigma \cdot \text{BR})_{VBF,H \rightarrow WW} \\
(\sigma \cdot \text{BR})_{ttH,H \rightarrow WW} \\
(\sigma \cdot \text{BR})_{WH,H \rightarrow WW} \\
(\sigma \cdot \text{BR})_{ZH,H \rightarrow WW}
\]

H\rightarrow WW chosen as reference as best measured for $M_H > 120$ GeV

For 30fb$^{-1}$ worse by factor 1.5 to 2
Total Decay Width Γ_H

- for $M_H > 200$ GeV, $\Gamma_{tot} > 1$ GeV
 - measurement from peak width in $ZZ \rightarrow 4 l$
- for $M_H < 200$ GeV, $\Gamma_{tot} \ll$ mass resolution
 - no direct determination
 - have to use indirect constraints on Γ_{tot}
- lower limit from observable rates:
 $\Gamma_{tot} > \Gamma_W + \Gamma_Z + \Gamma_t + \Gamma_g + ...$
- upper limit needs input from theory:
 mild assumption: $g_V < g_V^{SM}$
 valid in models with only Higgs doublets and singlets
 rate(VBF, $H \rightarrow WW) \sim \Gamma_V^2 / \Gamma_{tot} < (\Gamma_V^2 \text{ in SM}) / \Gamma_{tot}$
 $\Rightarrow \Gamma_{tot} < \text{rate}/(\Gamma_V^2 \text{ in SM})$
Absolute couplings with $g_V < g_V^{\text{SM}}$ constraint

- Coupling to W, Z, τ, b, t
- Γ_{inv} for undetectable decays e.g. c, gluons, new
- $\Gamma_{\text{photon}}(\text{new}), \Gamma_{\text{gluon}}(\text{new})$: non SM contribution to loops

$\Delta g/g = \frac{1}{2} \Delta(g^2)/g^2$
Motivation for Supersymmetry from Higgs Sector

- “solves” hierarchy problem: why $v = 246 \text{ GeV} < < M_{\text{Pl}} = 10^{19} \text{GeV}$?
- Higgs problem in SM:
 - large corrections to the mass of the Higgs-Boson
 - $\Delta M_H^2 = \alpha \Lambda^2 = \alpha M_{\text{Planck}}^2$
 - natural value $\sim M_{\text{Pl}}$
 - electroweak fit $M_H \sim O(100 \text{GeV})$

- SUSY solution:
 - partner with spin difference by $\frac{1}{2}$ cancel divergence exactly if same M
 - SUSY broken in nature, but hierarchy still fine if $M_{\text{SUSY}} \sim 1 \text{ TeV}$

- SUSY breaking in MSSM:
 - parametrised by 105 additional parameters
 - too many \Rightarrow constrained MSSM with 5 (6) additional parameters
The MSSM Higgs sector in a tiny Nut Shell

- SUSY: 2 Higgs doublets \rightarrow 5 physical bosons
 - real MSSM: 2 CP even h, H, 1 CP odd A, charged H^+, H^-
- at Born level 2 parameters: $\tan\beta, m_A$, $m_h < M_Z$
- large loop corrections from SUSY breaking parameters
 - $m_h < 133$ GeV for $m_{top} = 175$ GeV, $M_{SUSY} = 1$ TeV
- corrections depend on 5 SUSY parameters: $X_t, M_0, M_2, M_{gluino}, \mu$
 - fixed in the benchmark scenarios e.g. MHMAX scenario
 \rightarrow maximal M_h \rightarrow conservative LEP exclusion

- $g_{MSSM} = \xi g_{SM}$

<table>
<thead>
<tr>
<th>ξ</th>
<th>t</th>
<th>b/τ</th>
<th>W/Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$\cos\alpha/\sin\beta$</td>
<td>$-\sin\alpha/\cos\beta$</td>
<td>$\sin(\alpha-\beta)$</td>
</tr>
<tr>
<td>H</td>
<td>$\sin\alpha/\sin\beta$</td>
<td>$\cos\alpha/\cos\beta$</td>
<td>$\cos(\alpha-\beta)$</td>
</tr>
<tr>
<td>A</td>
<td>$\cot\beta$</td>
<td>$\tan\beta$</td>
<td>-----</td>
</tr>
</tbody>
</table>

- no coupling of A to W/Z
- small α \rightarrow small BR($h \rightarrow \tau\tau, bb$)
- large β \rightarrow large BR($h, H, A \rightarrow \tau\tau, bb$)

$\alpha =$ mixing btw. CP-even neutral Higgs bosons
main questions for ATLAS:

- At least 1 Higgs boson observable in the entire parameter space?
- How many Higgs bosons can be observed?
- Can the SM be discriminated from extended Higgs sectors?

- LEP $\tan\beta$ exclusion:
 no exclusion for m_t larger ~ 183 GeV!

- TEVATRON:
 so far exclusion for $\tan\beta > 50$, $M_A < 200$ GeV

- calculations with FeynHiggs
 (Heinemeyer, Hahn, et al.)

- no systematic uncertainties yet
The four CPC Benchmark Scenarios

- **MHMAX scenario** \(m_h < 133 \) GeV \(\rightarrow \) conservative LEP exclusion
- **Nomixing scenario** \(m_h < 116 \) GeV \(\rightarrow \) difficult for LHC
- **Gluophobic scenario** \(g_{h,\text{gluon}} \) \(m_h < 119 \) GeV
- **Small \(\alpha \) scenario** \(\rightarrow \) small \(g_{hbb} \) and \(g_{h\tau\tau} \) \(m_h < 123 \) GeV

theo. goal: harm discovery via
\(gg \rightarrow h, h \rightarrow \gamma\gamma \) and \(h \rightarrow ZZ \rightarrow 4l \)

theo. goal: harm discovery via
VBF, \(h \rightarrow \tau\tau \) \(tth, h \rightarrow bb \)
Vector Boson Fusion: 30 fb$^{-1}$

MHMAX scenario

VBF: $h \rightarrow WW$

VBF: $h \rightarrow \tau\tau$

excluded by LEP (prel.)

VBF: $H \rightarrow WW$

VBF: $H \rightarrow \tau\tau$

h or H observable with 30 fb$^{-1}$

studied for $M_H > 110$ GeV at low lumi running
almost same conclusion for all 4 CP conserving benchmark scenarios
Light Higgs Boson $h: 30 \text{ fb}^{-1}$

observable channels: VBF $\rightarrow \mu\mu$ tth $\rightarrow bb$

- MHMAX scenario
 - VBF: $h \rightarrow WW$
 - VBF: $h \rightarrow \tau\tau$
 - bbh: $h \rightarrow \mu\mu$
 - excluded by LEP (prel.)

- No mixing scenario
 - VBF: $h \rightarrow \tau\tau$
 - bbh: $h \rightarrow \mu\mu$
 - excluded by LEP (prel.)
 - tth: $h \rightarrow bb$

- Gluophobic scenario
 - VBF: $h \rightarrow \tau\tau$
 - bbh: $h \rightarrow \mu\mu$
 - excluded by OPAL
 - tth: $h \rightarrow bb$

Difference mainly due to different m_h in same $(\tan\beta, M_A)$ point (up to 17 GeV difference)
Small α scenario, h: 30 fb$^{-1}$

- hole due to reduced branching ratio for $H \rightarrow \tau\tau$

- covered by enhanced BR to gauge bosons

- complementarity of search channels almost guarantees observation of h
Light Higgs Boson $h: 300 \text{ fb}^{-1}$ (VBF only 30 fb$^{-1}$)

- also $h \rightarrow gg, h \rightarrow ZZ \rightarrow 4$ leptons, $tth \rightarrow bb$ contribute
- large area covered by several channels
 - sure discovery and parameter determination possible
- small area uncovered @ $m_h = 90$ to 100 GeV
- $h \rightarrow \gamma\gamma$ sensitive in gluophobic scenario due to Wh, tth production
Heavy Neutral Higgs Bosons

large $\tan\beta$: $bbH/A, H/A \rightarrow \tau\tau, \mu\mu$

$\sigma \sim (\tan\beta)^2$

low mass $<$ 450 GeV: $\tau\tau \rightarrow$ lep. $\nu \nu$ had. ν

trigger on lepton

large mass $>$ 450 GeV: also $\tau\tau \rightarrow$ had. ν had. ν

larger rate, trigger on hard tau jets

Eff.(LV1TR) = 80% = 95% offline selected events

Tau ID: eff(tau) = 55% rejection(QCD) = 2500

Markus Schumacher Higgs Physics with ATLAS Munich, November 29th 2005
Charged Higgs Bosons

- **High mass**: $m_{H^+} > m_{top}$
 - $gb \rightarrow H^+ t$
 - $H^+ \rightarrow \tau \nu$
 - $t \rightarrow bqq$
 - **New**: $W \rightarrow qq$
 - $H^+ \rightarrow \tau \nu$

- **Low mass**: $m_{H^+} < m_{top}$
 - $gg \rightarrow tt$
 - $tt \rightarrow H^+ bW$
 - Only low lumi.
 - **Transition region around m_{top}**
 - Needs revised experimental analysis
 - Running bottom quark mass used
 - Xsec for $gb \rightarrow tH^+$ from T. Plehn's program

MHMAX scenario

- 30 fb^{-1}
- 300 fb^{-1}
- $gb \rightarrow tH^+, H^+ \rightarrow \tau \nu$
- $tt \rightarrow bH^+ bW, H^+ \rightarrow \tau \nu, W^- Iv$
- 30 fb^{-1}

Excluded by LEP (prelim.)

$gb \rightarrow tH^+, H^+ \rightarrow tb$

New $W \rightarrow qq$
Overall Discovery Potential: 300 fb$^{-1}$

- at least one Higgs boson observable for all parameters in all CPC benchmark scenarios
- significant area where only lightest Higgs boson h is observable
- questions for future studies: can SUSY decay modes provide observation?
 e.g.: $H/A \rightarrow \chi_2 \chi_2 \rightarrow 2 \text{LSP} + 4 \text{lept.}$
 ongoing study in BN (N. Möser)

similar results in other benchmark scenarios

VBF channels, $H/A \rightarrow \tau\tau$ only used with 30fb$^{-1}$
SM or Extended Higgs Sector e.g. Minimal SUSY?

discrimination via rates from VBF

\[R = \frac{\text{BR}(h \rightarrow WW)}{\text{BR}(h \rightarrow \tau\tau)} \]

compare expected measurement of \(R \) in MSSM with prediction from SM for same value of \(M_H \)

- assume Higgs mass well measured
- no systematic errors considered

\[\Delta = \left| R_{\text{MSSM}} - R_{\text{SM}} \right| / \sigma_{\text{exp}} \]
The Higgs Sector in the CP Violating MSSM

- at Born level: CP symmetry conserved in Higgs sector
- complex SUSY breaking parameters \((\mu, A_t)\) introduce new CP phases
 - mixing between neutral CP eigenstates

mass eigenstates \(H_1, H_2, H_3\)

<> CP eigenstates \(h, A, H\)

Why consider such scenarios?

- no a priori reason for real SUSY parameters
- baryogenesis: 3 Sacharov conditions
 - B violation: via sphaleron processes
 - CP violation: SM too less, CPV MSSM new sources \(\rightarrow\) fine
 - No therm. Equ.: SM no strong 1st order electroweak phase transition
 - CPV MSSM still fine (even better NMSSM)
- evade dipole moments via spurious cancellations or split SUSY
Phenomenology in the CPX scenario

- maximise effect \rightarrow CPX scenario (Carena et al., Phys.Lett B495 155(2000))
 \[\arg(A_t) = \arg(A_b) = \arg(M_{\text{gluino}}) = 90 \text{ degree} \]

- scan of Born level parameters: \(\tan \beta \) and \(M_{H^+} \)

- \(H_1, H_2, H_3 \) couple to \(W, Z \)
 \rightarrow all produced in VBF

- \(H_2, H_3 \rightarrow H_1 H_1, ZH_1, WW, ZZ \)
 decays possible

- no limit for mass of \(H_1 \) from LEP
 (compare CPC MSSM: \(M_h > M_Z \))

LHWG-Note 2005-01
CP-Violating MSSM: Overall Discovery Potential

- yet uncovered area
- size and location of "hole" depends on M_{top} and program for calculation

M_{H_1}: < 70 GeV
M_{H_2}: 105 to 120 GeV
M_{H_3}: 140 to 180 GeV

Small masses below 70 GeV not yet studied in ATLAS

- most promising channel: $tt \rightarrow bW bH^+, H^+ \rightarrow W H_1, H_1 \rightarrow bb$
- final state: $4b 2j l \nu$ same as $ttH, H \rightarrow bb$ (study in Bonn)
- revised studies for $H_{2/3} \rightarrow H_2 H_1$ also interesting
Very first look at new promising MC study

- \(t\bar{t}\rightarrow H^+ b W b \quad H^+\rightarrow W H_1 \quad H_1\rightarrow bb \)
- 1 leptonic W decay \(\rightarrow\) lepton for trigger
- reconstruct top quarks \(\rightarrow\) combinatorics
- associate b quarks to H_1, H^+ \(\rightarrow\) \(M_{H_1} \) and \(M_{H^+} \)

\(M_{H^+} = 135 \text{ GeV}, \quad M_{H_1} = 54 \text{GeV}, \quad \tan\beta = 4.8 \) (diploma thesis M. Lehmacher, BN)

- estimate of background seems difficults
- coverage of hole area under study!

![Signal and background distributions](image)

Markus Schumacher
Higgs Physics with ATLAS
Munich, November 29th 2005
Conclusion and Outlook

- **Standard model**: discovery of SM Higgs boson with 15 fb$^{-1}$
 - requires good understanding of whole detector
 - multiple channels with larger luminosity → Higgs profile investigation

- **CP conserving MSSM**: at least one Higgs boson observable
 - only h observable in wedge area at intermediate tanβ
 - maybe Higgs to SUSY or SUSY to Higgs observable?
 - discrimination via Higgs parameter determination seems promising

- **CP violating MSSM**: probably a „hole“ with current MC studies
 - promising MC studies on the way

- **more realistic MC studies**:
 - influence of miscalibrated and misaligned detector
 - improved methods for background estimation from data
 - use of NLO calculations and MCs for signal and background

- **additional extended models + search channels**:
 - CPV MSSM, NMSSM, 2HDM
 - Higgs → SUSY, SUSY→Higgs
 - VBF, H→bb (b-trigger at LV2), VBF,H→inv. (add. forward jet trigger)
Let's wait and work for Higgs boson discovery

Thanks for your attention!